ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Ultra High Accuracy, Low Iq, 500 mA **Low Dropout Regulator**

The NCP3335 is a high performance, low dropout regulator. With accuracy of ±0.9% over line and load and ultra-low quiescent current and noise it encompasses all of the necessary features required by today's consumer electronics. This unique device is guaranteed to be stable without a minimum load current requirement and stable with any type of capacitor as small as 1.0 μF. The NCP3335 also comes equipped with sense and noise reduction pins to increase the overall utility of the device.

Features

- High Accuracy Over Line and Load (±0.9% at 25°C)
- Ultra-Low Dropout Voltage at Full Load (260 mV typ.)
- No Minimum Output Current Required for Stability
- Low Noise (35 μVrms w/ 10 nF C_{nr} and 56 μVrms w/out C_{nr})
- Low Shutdown Current (0.07 µA)
- 2.6 V to 12 V Supply Range
- Thermal Shutdown Protection
- Current Limitation
- ard
 Cattular Phones

 Camcoders and Cameras

 Networking Systems, DSL/Cable Modems

 Cable Set-Top Box

 MP3/CD Players
 DSP Supply
 Displays and Monitors

ON Semiconductor®

http://onsemi.com

Micro8™ **DMR2 SUFFIX** CASE 846A

QFN10 MN SUFFIX **CASE 485C**

MARKING DIAGRAM

1,2. V_{out} 3. Sense 4. GND

5. NR

6. SD (Shutdown)

7,8. V_{in}

3335 ALYW= Pin 1,2. Vout 3. Sense 4. GND 5,6. NC 7. NR

8. SD 9,10. V_{in}

= LHX for 2.5 V XXX

> = LHY for 2.85 V = LHZ for 3.3 V

= Assembly Location

= Wafer Lot Υ = Year W = Work Week

= Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

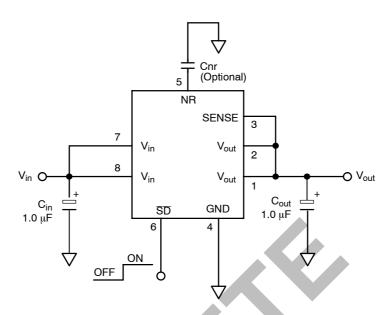


Figure 1. Typical Application Schematic (Micro8 Package)

PIN FUNCTION DESCRIPTION

			OFF 6
			401
		Figure	1. Typical Application Schematic (Micro8 Package)
			A CE IDUCA
PIN FUNC	TION DESC	CRIPTION	
Pin No. Micro8	Pin No. QFN10	Pin Name	Description
1, 2	1, 2	V _{out}	Regulated output voltage. Bypass to ground with $C_{out} \ge 1.0 \mu F$.
3	3	SENSE	For output voltage sensing, connect to Pins 1 and 2.
4	4	GND	Power Supply Ground
5	7	NR	Noise Reduction Pin. This is an optional pin used to further reduce noise.
6	8	SD	Shutdown pin. When not in use, this pin should be connected to the input pin.
7, 8	9, 10	V _{in}	Power Supply Input Voltage
=	5, 6	NC	Not Connected

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{in}	-0.3 to +16	V
Output Voltage	V _{out}	-0.3 to V _{in} +0.3	V
Shutdown Pin Voltage	V _{sh}	-0.3 to +16	V
Thermal Characteristics Thermal Resistance, Junction-to-Air	$R_{ heta JA}$	238	°C/W
Operating Junction Temperature Range	TJ	-40 to +150	°C
Storage Temperature Range	T _{stg}	-50 to+150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

This device series contains ESD protection and exceeds the following tests:

Human Body Model (HBM) JESD 22-A114-B Machine Model (MM) JESD 22-A115-A

$\textbf{ELECTRICAL CHARACTERISTICS-2.5 V} \ (V_{out} = 2.5 \ V \ typical, \ V_{in} = 2.9 \ V, \ T_{A} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}, \ unless \ otherwise \ noted)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) $V_{in} = 2.9 \text{ V to } 6.5 \text{ V}, I_{load} = 0.1 \text{ mA to } 500 \text{ mA}, T_J = 25 ^{\circ}\text{C}$	V _{out}	-0.9% 2.477	2.5	+0.9% 2.523	V
Output Voltage (Accuracy) $V_{in} = 2.9 \text{ V to } 6.5 \text{ V}, I_{load} = 0.1 \text{ mA to } 500 \text{ mA}, T_J = 0^{\circ}\text{C to } +85^{\circ}\text{C}$	V _{out}	-1.4% 2.465	2.5	+1.4% 2.535	V
Output Voltage (Accuracy), (Note 1) V_{in} = 2.9 V to 6.5 V, I_{load} = 0.1 mA to 500 mA, T_{J} = -40°C to +150°C	V _{out}	-1.5% 2.462	2.5	+1.5% 2.538	V
Line Regulation V _{in} = 2.9 V to 6.5 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 2.9 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout voltage I _{load} = 500 mA (Note 2) I _{load} = 300 mA (Note 2) I _{load} = 50 mA I _{load} = 0.1 mA	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 6)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 6)	I _{sc}		. (3)	900	mA
Thermal Shutdown	TJ	1.	160		°C
Ground Current In Regulation Iload = 500 mA (Note 2) Iload = 300 mA (Note 2) Iload = 50 mA Iload = 50 mA Iload = 0.1 mA In Dropout Vin = 2.4 V, Iload = 0.1 mA	I _{GND}	CRI	9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA μA
In Shutdown S _D = 0 V	I_{GNDsh}		0.07	1.0	μΑ
Output Noise $C_{nr}=0 \text{ nF, } I_{load}=500 \text{ mA, } f=10 \text{ Hz to } 100 \text{ kHz, } C_{out}=10 \mu\text{F} \\ C_{nr}=10 \text{ nF, } I_{load}=500 \text{ mA, } f=10 \text{ Hz to } 100 \text{ kHz, } C_{out}=10 \mu\text{F} \\$	V _{noise}		56 35		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V
SD Input Current, V _{SD} = 0 V to 0.4 V or V _{SD} = 2.0 V to V _{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ

For proper operation below T_J = 0°C, please refer to Figure 8.
 T_A must be greater than 0°C.

$\textbf{ELECTRICAL CHARACTERISTICS - 2.85 V} \ (V_{out} = 2.85 \ V \ typical, \ V_{in} = 3.25 \ V, \ T_{A} = -40 ^{\circ}C \ to \ +85 ^{\circ}C, \ unless \ otherwise \ noted)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) $V_{in} = 3.25 \text{ V}$ to 6.85 V, $I_{load} = 0.1 \text{ mA}$ to 500 mA, $T_J = 25^{\circ}\text{C}$	V _{out}	-0.9% 2.824	2.85	+0.9% 2.876	٧
Output Voltage (Accuracy) $V_{in} = 3.25$ V to 6.85 V, $I_{load} = 0.1$ mA to 500 mA, $T_J = 0$ °C to +85°C	V _{out}	-1.4% 2.810	2.85	+1.4% 2.890	V
Output Voltage (Accuracy) (Note 3) $V_{in} = 3.25$ V to 6.85 V, $I_{load} = 0.1$ mA to 500 mA, $T_J = -40$ °C to +150°C	V _{out}	-1.5% 2.807	2.85	+1.5% 2.893	V
Line Regulation $V_{in} = 3.25 \text{ V to } 6.85 \text{ V, } I_{load} = 0.1 \text{ mA}$	Line _{Reg}		0.04		mV/V
Load Regulation $V_{in} = 3.25 \text{ V}, I_{load} = 0.1 \text{ mA to } 500 \text{ mA}$	Load _{Reg}		0.04		mV/mA
Dropout voltage I _{load} = 500 mA I _{load} = 300 mA I _{load} = 50 mA I _{load} = 0.1mA	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 6)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 6)	I _{sc}		. (3)	900	mA
Thermal Shutdown	TJ	1.	160		°C
Ground Current In Regulation Iload = 500 mA (Note 4) Iload = 300 mA Iload = 50 mA Iload = 0.1 mA	I _{GND}	ICON ICON	9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 2.75 V, I _{load} = 0.1 mA In Shutdown SD = 0 V	IGNDsh		0.07	500	μΑ μΑ
Output Noise $C_{nr} = 0$ nF, $I_{load} = 500$ mA, $f = 10$ Hz to 100 kHz, $C_{out} = 10$ μ F $C_{nr} = 10$ nF, $I_{load} = 500$ mA, $f = 10$ Hz to 100 kHz, $C_{out} = 10$ μ F	V _{noise}		61 40	12	μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V
S _D Input Current, V _{SD} = 0 V to 0.4 V or V _{SD} = 2.0 V to V _{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, Vout = 0 V	I _{OSD}		0.07	1.0	μΑ

^{3.} For proper operation below T_J = 0°C, please refer to Figure 7.
4. T_A must be greater than 0°C.

$\textbf{ELECTRICAL CHARACTERISTICS - 3.3 V} \ (V_{out} = 3.3 \ V \ typical, \ V_{in} = 3.7 \ V, \ T_{A} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}, \ unless \ otherwise \ noted)$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) $V_{in} = 3.7 \text{ V to } 7.3 \text{ V, } I_{load} = 0.1 \text{ mA to } 500 \text{ mA, } T_J = 25^{\circ}\text{C}$	V _{out}	-0.9% 3.270	3.3	+0.9% 3.330	V
Output Voltage (Accuracy) $V_{in} = 3.7 \text{ V}$ to 7.3 V, $I_{load} = 0.1 \text{ mA}$ to 500 mA, $T_J = 0^{\circ}\text{C}$ to +85°C	V _{out}	-1.4% 3.254	3.3	+1.4% 3.346	V
Output Voltage (Accuracy) $V_{in}=3.7~V~to~7.3~V,~I_{load}=0.1~mA~to~500~mA,~T_{J}=-40^{\circ}C~to~+150^{\circ}C$	V _{out}	-1.5% 3.250	3.3	+1.5% 3.350	V
Line Regulation $V_{in} = 3.7 \text{ V}$ to 7.3 V, $I_{load} = 0.1 \text{ mA}$	Line _{Reg}		0.04		mV/V
Load Regulation $V_{in} = 3.7 \text{ V}, I_{load} = 0.1 \text{ mA to } 500 \text{ mA}$	Load _{Reg}		0.04		mV/mA
Dropout Voltage I _{load} = 500 mA I _{load} = 300 mA I _{load} = 50 mA I _{load} = 0.1 mA	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 6)	lpk	500	700	800	mA
Short Output Current (See Figure 6)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation Iload = 500 mA (Note 5) Iload = 300 mA Iload = 50 mA Iload = 0.1 mA	I _{GND}	ICON ICON	9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout $V_{in} = 3.2 \text{ V, } I_{load} = 0.1 \text{ mA}$	4	KO	-	500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μΑ
Output Noise $C_{nr}=0 \text{ nF, } I_{load}=500 \text{ mA, } f=10 \text{ Hz to } 100 \text{ kHz, } C_{out}=10 \mu\text{F} \\ C_{nr}=10 \text{ nF, } I_{load}=500 \text{ mA, } f=10 \text{ Hz to } 100 \text{ kHz, } C_{out}=10 \mu\text{F}$	V _{noise}		69 46		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, Vout = 0 V	I _{OSD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V 5. T _A must be greater than 0°C.					

^{5.} T_A must be greater than 0°C.

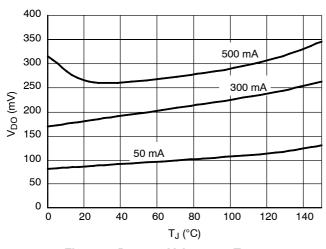


Figure 2. Dropout Voltage vs. Temperature

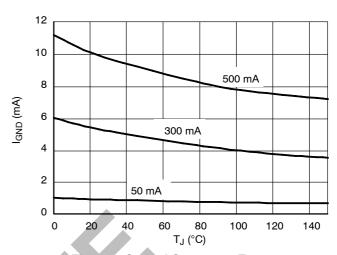


Figure 3. Ground Current vs. Temperature

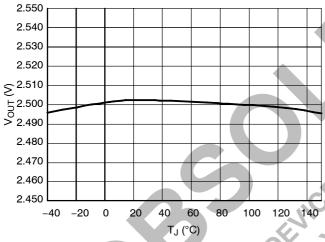


Figure 4. Output Voltage vs. Temperature

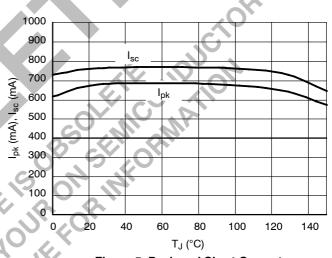


Figure 5. Peak and Short Current vs. Temperature

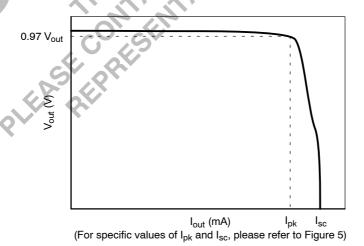


Figure 6. Output Voltage vs. Output Current

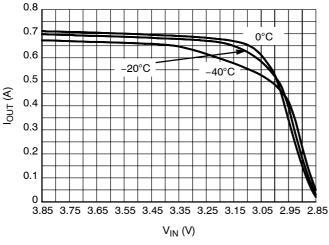


Figure 7. Output Current Capability for the 2.85 V Version

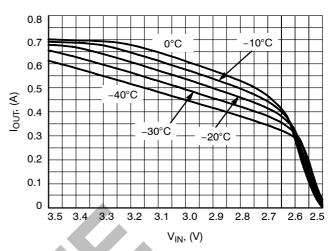
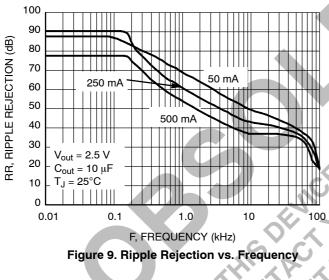



Figure 8. Output Current Capability for the 2.5 V Version

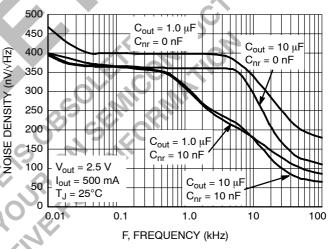
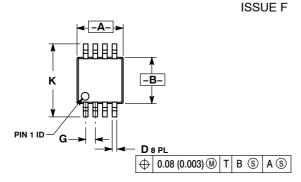
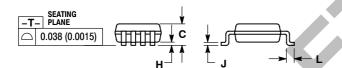


Figure 10. Output Noise Density

ORDERING INFORMATION

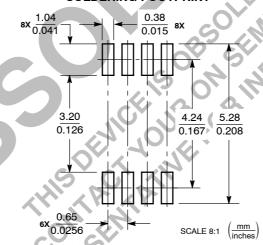

Device	Nominal Output Voltage	Package	Shipping [†]
NCP3335DMR2250G	2.5 V	Micro8 (Pb-Free)	4000 / Tape & Reel
NCP3335DMR2285G	2.85 V	Micro8 (Pb-Free)	4000 / Tape & Reel
NCP3335DMR2330G	3.3 V	Micro8 (Pb-Free)	4000 / Tape & Reel
NCP3335MN250R2G	2.5 V	QFN10 (Pb-Free)	4000 / Tape & Reel
NCP3335MN330R2G	3.3 V	QFN10 (Pb-Free)	4000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}Please contact factory for other voltage options.

PACKAGE DIMENSIONS

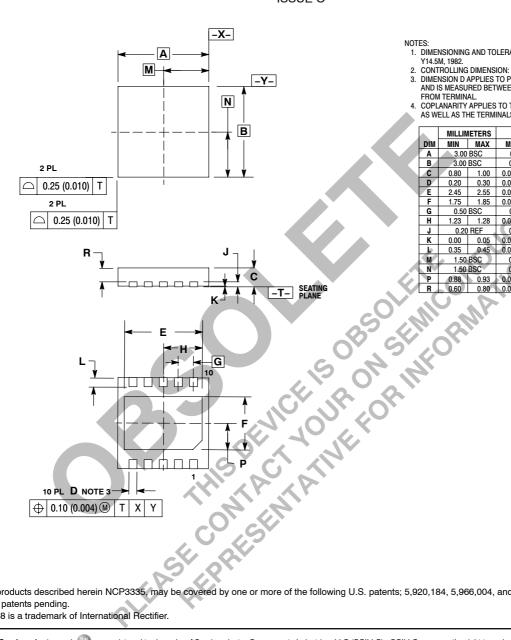
Micro8 CASE 846A-02



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS. MIOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR
- PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
- 846A-01 OBSOLETE, NEW STANDARD 846A-02.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
C		1.10		0.043	
D	0.25	0.40	0.010	0.016	
G	0.65	BSC	0.026	BSC	
Н	0.05	0.15	0.002	0.006	
J	0.13	0.23	0.005	0.009	
K	4.75	5.05	0.187	0.199	
L	0.40	0.70	0.016	0.028	


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

10 Pin QFN CASE 8485C-01 **ISSUE 0**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	3.00	BSC	0.118 BSC		
В	3.00	BSC	0.118	BSC	
C	0.80	1.00	0.031	0.039	
D	0.20	0.30	0.008	0.012	
E	2.45	2.55	0.096	0.100	
F	1.75	1.85	0.069	0.073	
G	0.50	BSC	0.020 BSC		
Н	1.23	1.28	0.048	0.050	
J	0.20	REF	0.008	REF	
K	0.00	0.05	0.000	0.002	
<u> </u>	0.35	0.45	0.014	0.018	
M	1.50 BSC		0.059	BSC	
N	1.50 BSC		0.059	BSC	
P	0.88	0.93	0.035	0.037	
R	0.60	0.80	0.024	0.031	

The products described herein NCP3335, may be covered by one or more of the following U.S. patents; 5,920,184, 5,966,004, and 5,834,926. There may be other patents pending.

Micro8 is a trademark of International Rectifier.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative